Congratulations on your purchase of Fuji Electric’s Portable Infrared Gas Analyzer (Type: ZFY).

- Before using, be sure to read this instruction manual carefully to ensure correct installation, operation and maintenance of the infrared gas analyzer. Note that incorrect handling may lead to trouble or personal injury.
- The specifications of this infrared gas analyzer are subject to change for improvement without prior notice.
- Do not attempt to modify the infrared gas analyzer without permission. Fuji is not responsible for any trouble caused by modification without permission.
- This instruction manual should always be kept on hand by the user.
- After reading, be sure to keep this manual in a place where it can easily be seen by the operator.
- Make sure that this manual is presented to the final user.

Manufacturer : Fuji Electric Instrumentation Co., Ltd.
Type : Described in Fuji Electric’s company nameplate on main frame
Date of manufacture : Described in Fuji Electric’s company nameplate on main frame
Product nationality : Japan

Delivered items
- Main unit ... 1
- Power cord .. 1
- Power fuse (tube type; 1A, ø6.4 × 30) 1
- Instruction manual .. 1
- Filter paper ... 25
- Calibration gas piping connecting joint 1
- Main unit vinyl cover ... 1
- ø9/5 elastic tube, 5cm (for ø6 tube connection) 1
- Hose band (ø10) .. 2

NOTICE
- It is prohibited to transfer part or all of this manual without Fuji Electric’s permission in written format.
- Description in this manual will be changed without prior notice for further improvement.

© Fuji Electric Systems Co., Ltd. 1998
Issued in July, 1998
SAFETY PRECAUTION

First of all, read this “Safety Precaution” carefully, and then use the analyzer in the correct way.

- The cautionary descriptions listed here contain important information about safety, so they should always be observed. Those safety precautions are ranked 2 levels; “DANGER” and “CAUTION”.

<table>
<thead>
<tr>
<th>Warning & Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Wrong handling may cause a dangerous situation, in which there is a risk of death or heavy injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Wrong handling may invite a dangerous situation, in which there is a possibility of medium-level trouble or slight injury or only physical damage is predictable.</td>
</tr>
</tbody>
</table>

Caution on installation and transport of gas analyzer

| DANGER | This unit is not an explosion-proof type. Do not use it in a place with explosive gases to prevent explosion, fire or other serious accidents. |
| CAUTION | - For installation, observe the rule on it given in the instruction manual and select a place where the weight of gas analyzer can be endured. Installation at an unsuited place may cause turnover or fall and there is a risk of injury.
- For lifting the gas analyzer, be sure to wear protective gloves. Bare hands may invite an injury.
- Before transport, fix the casing so that it will not open. Otherwise, the casing may be separated and fall to cause an injury.
- During installation work, care should be taken to keep the unit free from entry of cable chips or other foreign objects. Otherwise, it may cause fire, trouble or malfunction of the unit. |
Caution on piping

DANGER
In piping, the following precautions should be observed. Wrong piping may cause gas leakage. If the leaking gas contains a toxic component, there is a risk of serious accident being induced. Also, if combustible gas is contained, there is a danger of explosion, fire or the like occurring.

- Connect pipes correctly referring to the instruction manual.
- Exhaust should be led outdoors so that it will not remain in the locker and installation room.
- Exhaust from the analyzer should be relieved in the atmospheric air in order that an unnecessary pressure will not be applied to the analyzer. Otherwise, any pipe in the analyzer may be disconnected to cause gas leakage.
- For piping, use a pipe to which oil and grease are not adhering. If such a material is adhering, a fire or the like accident may be caused.

Caution on wiring

CAUTION
- Wiring is allowed only when all power supplies are turned off. This is required for preventing a shock hazard.
- Enforce construction of class-3 grounding wire by all means. If the specified grounding construction is neglected, a shock hazard or fault may be caused.
- Wires should be the proper one meeting the ratings of this instrument. If using a wire which cannot endure the ratings, a fire may occur.
- Use power source that matches the rating of the unit. Use of power source out of rating may cause fire.

Caution on use

DANGER
- When handling the standard gas such as calibration gas, read the instruction manual of the standard gas carefully and use the gas correctly.

CAUTION
- Avoid continuous operation with the casing drawn out.
- During operation, avoid opening the casing and touching the internal parts. Otherwise, you may suffer a burn or shock hazard.
<table>
<thead>
<tr>
<th>Caution on maintenance and check</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
</tr>
<tr>
<td>• When doors are open during maintenance or inspection for adjusting the optical system, etc., be sure to purge sufficiently the inside of the gas analyzer as well as the measuring gas line with nitrogen or air, in order to prevent poisoning, fire or explosion due to gas leaks.</td>
</tr>
<tr>
<td>CAUTION</td>
</tr>
<tr>
<td>• Before working, take off a wrist watch, finger ring or the like metallic accessories. And never touch the instrument with a wet hand. Otherwise, you will have a shock hazard.</td>
</tr>
<tr>
<td>• If the fuse is blown, eliminate the cause, and then replace it with the one of the same capacity and type as before. Otherwise, shock hazard or fault may be caused.</td>
</tr>
<tr>
<td>• Do not use a replacement part other than specified by the instrument maker. Otherwise, adequate performance will not be provided. Besides, an accident or fault may be caused.</td>
</tr>
<tr>
<td>• Replacement parts such as a maintenance part should be disposed of as incombustibles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
</tr>
<tr>
<td>• If the cause of any fault cannot be determined despite reference to the instruction manual, be sure to contact your dealer or Fuji Electric's technician in charge of adjustment. If the instrument is disassembled carelessly, you may have a shock hazard or injury.</td>
</tr>
</tbody>
</table>
CAUTION ON USE

- **Select a suitable installation place.**
 Install the unit in a place with normal temperature and humidity, free from excessive change in temperature and from heat radiation and direct sunlight.
 This unit is designed for indoor installation. When it is installed outdoors, choose a place where it is not exposed to wind and rain. Be sure to use a proper case cover.

- **Do not install the unit in a place with vibrations.**

- **Cleaning of instrument**
 Do not use solvents such as benzine, thinner, etc., as it damages the case.

- **Prohibition of use of transceivers and portable telephones:**
 Do not use transceivers and portable telephones near the analyzer to prevent incorrect measurement due to noise.

- **Use the unit in a place with good environment.**
 The unit should be used in a place free from corrosive or combustible gases.

- **Be careful with electric shocks.**
 The unit should be earthed to avoid electric shocks.

- **Key operation**
 Do not use any object with a sharp tip when operating the function keys on the instrument panel.
1. OUTLINE

This portable infrared gas analyzer is equipped with a high performance sensor specifically developed for infrared gas analyzers. It is designed for many applications such as for measuring carbon dioxide gas in a greenhouse for agriculture, and ordinary rooms, setting the inside of thermal processing furnace, etc.

2. NAME AND DESCRIPTION OF EACH COMPONENT

2.1 Name and description of each component on case

- **Calibration gas inlet**: Standard gas inlet for span calibration
- **Waste heat discharge port**: Heat in the analyzer is discharged with a large type fan. Do not close the waste heat discharge port.
- **Power switch**: Power ON/OFF switch
- **Power fuse**: Used to protect the electronic circuits in the analyzer. When it needs to be replaced, be sure to use the specified one. (tube type:1A, ø6.4×30)
- **Membrane filter**: Used to remove fine dust contained in measured gas.
- **Exhaust port**: Measured gas outlet; gas should be discharged to a well ventilated place.
- **Drain outlet (with plug)**
- **Drain outlet**: Outlet for drain separated and removed from measured gas.
- **Power socket**: Connect the supplied power cord.
- **Signal terminal block**: Terminal block with 4 to 20mA DC output and earth terminals
- **Earth terminal**

Front panel
Display units and setting keys are mounted.

Front view

Rear view

Measured gas inlet: Used to feed measured gas to the measuring unit.

Drain separator: Used to separate and remove drain contained in measured gas.
2.2 Name and description of component/operation panel

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Main display</td>
<td>Indicates gas density measured value or calibration gas set value.</td>
</tr>
<tr>
<td>② Unit lamp</td>
<td>Indicates the unit of measured gas concentration.</td>
</tr>
<tr>
<td>③ Sub display</td>
<td>Indicates measurement range, error code and various set values.</td>
</tr>
<tr>
<td>④ Function lamp</td>
<td>Lights up at the following function.</td>
</tr>
<tr>
<td></td>
<td>MEAS: Lights in measuring status.</td>
</tr>
<tr>
<td></td>
<td>SPAN: Flickers in calibration concentration setting mode.</td>
</tr>
<tr>
<td>⑤ Sample flow meter</td>
<td>Indicates sample flow rate.</td>
</tr>
<tr>
<td>⑥ Pump operation key</td>
<td>Used for pump ON-OFF</td>
</tr>
<tr>
<td>⑦ Function key</td>
<td>Desired setting mode is selected at a press of key (see Chapter 5).</td>
</tr>
<tr>
<td>⑧ Range select key</td>
<td>Used for selection of range.</td>
</tr>
<tr>
<td></td>
<td>High range is selected by pressing Δ key, and low range is selected by</td>
</tr>
<tr>
<td></td>
<td>pressing ∇ key.</td>
</tr>
<tr>
<td>⑨ Digit shift key</td>
<td>Digit is shifted from maximum value to minimum one at a press of key.</td>
</tr>
<tr>
<td>⑩ Numerical value input key</td>
<td>Numerical value of selected digit increases at a press of key.</td>
</tr>
<tr>
<td>⑪ ENT key</td>
<td>By pressing this key after setting, the set data is stored in memory and become valid.</td>
</tr>
<tr>
<td>⑫ Zero calibration key</td>
<td>Used for zero calibration (lamp flickers in zero calibration mode).</td>
</tr>
<tr>
<td>⑬ Span calibration key</td>
<td>Used for span calibration (lamp flickers in span calibration mode).</td>
</tr>
<tr>
<td>⑭ Calibration start key</td>
<td>Manual calibration start key:</td>
</tr>
<tr>
<td></td>
<td>Zero calibration is started by pressing $\text{ZERO} \Rightarrow \text{CAL}$ keys.</td>
</tr>
<tr>
<td></td>
<td>Span calibration is started by pressing $\text{SPAN} \Rightarrow \text{CAL}$ keys.</td>
</tr>
<tr>
<td></td>
<td>(CAL lamp lights during calibration)</td>
</tr>
</tbody>
</table>
3. PREPARATION FOR MEASUREMENT

![DANGER]

- This unit is not an explosion-proof type. Do not use it in a place with explosive gases to prevent explosion, fire or other serious accidents.

![CAUTIONS]

- For installation, observe the rule on it given in the instruction manual and select a place where the weight of gas analyzer can be endured. Installation at an unsuited place may cause turnover or fall and there is a risk of injury.
- For lifting the gas analyzer, be sure to wear protective gloves. Bare hands may invite an injury.
- Before transport, fix the casing so that it will not open. Otherwise, the casing may be separated and fall to cause an injury.
- During installation work, care should be taken to keep the unit free from entry of cable chips or other foreign objects. Otherwise, it may cause fire, trouble or malfunction of the unit.

3.1 Installation

(1) **Installation location**

The unit should be installed on a level top of table near furnace.

(2) **Caution on selection of installation location**

1) A place with sufficient air ventilation and without furnace combustion waste gas
2) A place not exposed to heat radiation from furnace
3) A place with less changes in ambient temperature
4) A place away from electric device which generates noise from power source
5) A place where transceivers or portable telephones are not used.
3.2 Piping

In piping, the following precautions should be observed. Wrong piping may cause gas leakage.
If the leaking gas contains a toxic component, there is a risk of serious accident being induced.
Also, if combustible gas is contained, there is a danger of explosion, fire or the like occurring.
• Connect pipes correctly referring to the instruction manual.
• Exhaust should be led outdoors so that it will not remain in the locker and installation room.
• Exhaust from the analyzer should be relieved in the atmospheric air in order that an unnecessary pressure will not be applied to the analyzer. Otherwise, any pipe in the analyzer may be disconnected to cause gas leakage.
• For piping, use a pipe to which oil and grease are not adhering. If such a material is adhering, a fire or the like accident may be caused.

(1) Piping procedure

① Sample inlet
Insert a Teflon tube (ø6/ø4) or copper pipe into the elastic tube (ø9/ø5) at the drain separator cap (gas inlet), and secure it with a hose band. Then, fix the drain separator cap to the drain separator at the rear right side.

② Sample outlet
Connect Teflon tube (ø6/ø4) or copper pipe to the exhaust port tube (ø9/ø5 elastic tube) at the lower left on the rear side. Waste sample gas should be discharged to a non-hazardous place.
CAUTIONS

- Make sure that the drain outlet under the exhaust port is always closed. If an exhaust pipe is connected by mistake, the drain is mixed with the sample gas which may lead to a risk of combustion or explosion.

- The drain separator packing has front and rear sides. Be careful with its mounting position.

(2) Caution on sampling

① The analyzer has a filter paper. For continuous measurement, a filter should be used separately in the middle of the sampling tube (Fuji Electric’s recommended filter: Mist filter, Type: ZBBK1V03).

② To prevent entry of high-temperature sample gas into the analyzer, make sure that the piping length is more than 2m.

③ The analyzer is not equipped with a dehumidifier. When sample gas dew point is higher than the ambient temperature, stop absorbing the sample gas.
3.3 Wiring

⚠️ **CAUTIONS**

- Wiring is allowed only when all power supplies are turned off. This is required for preventing a shock hazard.
- Enforce construction of class-3 grounding wire by all means. If the specified grounding construction is neglected, a shock hazard or fault may be caused.
- Wires should be the proper one meeting the ratings of this instrument. If using a wire which cannot endure the ratings, a fire may occur.
- Use power source that matches the rating of the unit. Use of power source out of rating may cause fire.

(1) **Power source**

Connect the supplied power cable to the power socket at the rear panel.

(2) **Grounding**

Connect the earth wire of the power cord to the signal connection terminal No. 3 (E) for Class-3 grounding.

(3) **Output signal**

Gas concentration output 4 to 20mA DC is transmitted from the signal connection terminal No. 1 (0+) and No. 2 (0-).

To minimize the effect of external noise, be sure to use a shield wire.

Note) If noise from an external relay, solenoid valve, etc. affects the analyzer, connect a varister (Fuji Electric: ENA211-2, etc.) or spark killer (OKAYA: S-1201, etc.) to the source of noise.

When it is connected at a place away from the source of noise, expected effects cannot be obtained.
4. OPERATION

DANGER

- When handling the standard gas such as calibration gas, read the instruction manual of the standard gas carefully and use the gas correctly.

CAUTIONS

- Avoid continuous operation with the casing drawn out.
- During operation, avoid opening the casing and touching the internal parts. Otherwise, you may suffer a burn or shock hazard.

4.1 Operation procedure

1. Turn ON the power (power switch at the lower left of front panel should be set to ON)
 Make sure that the pump is OFF. If the pump is ON, be sure to turn it OFF.
2. Warming-up operation (about 30 minutes)
3. Calibration (zero/span calibration with sample gas) (see Chapter 5)

4.2 Start of measurement

Turn ON the pump using the pump operation key. The sample gas is absorbed and measurement is started.

4.3 Stop

1. Turn OFF the pump using the pump operation key.
2. Remove the sample piping to suck up the air, then turn ON the pump using the pump operation key and take up the air into the analyzer (5 minutes).
3. Turn OFF the pump again using the pump operation key and keep the analyzer in storage.
5. OPERATION OF DISPLAY/OPERATION PANEL

5.1 Outline of display/operation panel

Operation is made in the following order.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
<th>Main display</th>
<th>Sub display</th>
<th>Function indicating lamp</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔</td>
<td>Measurement mode</td>
<td>Measured value</td>
<td>Range</td>
<td>MEAS lamp light</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Setting mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➔</td>
<td>Calibration concentration</td>
<td></td>
<td></td>
<td>SPAN lamp flicker</td>
<td>10</td>
</tr>
<tr>
<td>➔</td>
<td>CO value setting</td>
<td></td>
<td></td>
<td>HOLD lamp flicker</td>
<td>10</td>
</tr>
<tr>
<td>➔</td>
<td>Temperature measurement selection (option)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature measurement (option)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➔</td>
<td>Key lock selection</td>
<td>Measured value</td>
<td>Range</td>
<td>Zero key display lamp flicker</td>
<td>10</td>
</tr>
</tbody>
</table>

Zero calibration

Span calibration

- In setting mode, analog output signal is held to the value prior to the setting mode.
- When option function is not provided, data of that function is not displayed.
5.2 General operation

DANGER

- When handling the standard gas such as calibration gas, read the instruction manual of the standard gas carefully and use the gas correctly.

CAUTIONS

- Avoid continuous operation with the casing drawn out.
- During operation, avoid opening the casing and touching the internal parts. Otherwise, you may suffer a burn or shock hazard.

- The analyzer is set in measurement mode at ON of power switch. At this time, measured gas concentration is shown on the main display.
- Before starting measurement, be sure to calibrate zero and span at low and high ranges.

Advice on operation

To change set value

Press \(> \) key and select your desired digit. The selected digit will flicker.

Press \(\wedge \) key and change the set value.

Press \(\text{ENT} \) key and store the set value which has been changed in memory.

Releasing zero and span:

In case of incorrect operation during zero/span calibration, release zero/span using the following procedure.

If \(\text{SPAN} \) key is pressed by mistake when \(\text{ZERO} \) key is to be pressed, press \(\text{SPAN} \) key again and calibration can be released.

If \(\text{ZERO} \) key is pressed by mistake when \(\text{SPAN} \) key is to be pressed, press \(\text{ZERO} \) key again and calibration can be released.
5.2.1 Calibration concentration setting

Calibration gas concentration (span value) can be set.

By pressing the [FUNC] key in measurement mode, the preset span value is shown on the main display and the function lamp for [SPAN] LED flickers. After selecting range, press the []) and [] keys to set span. The set value is stored in memory at press of the [ENT] key.

[Adjustment at each range]
Perform the following operation and setting.

Make sure that the maximum digit flickers on the main display, then press the [CAL] key. is shown on the main display and [CAL] is shown on the sub display.

By pressing the [] key, it is switched to .

Meaning of set value

- : Effective only for that range; span can be calibrated independently on each range.
- : When span is calibrated on 1 range, those of other ranges are also calibrated in succession.

After selecting, press the [ENT] key. Setting operation is now completed.

Note) When measured gas contains H₂ gas, its concentration affects the span point. In this case, use a standard gas (measured gas / H₂ / N₂) which contains the same H₂ gas as contained in the measured gas or use the value corrected from the attached test report as a span value.

Note) When measured gas is being supplied, the indications of low and high ranges may not correspond with each other within the accuracy of linearity.

5.2.2 Key lock ON/OFF setting

This is a function to prevent the analyzer from operating by mistake.

When the key lock is set in position, any keys other than the [FUNC] key cannot be used. To release this function, set it to .

Press the [FUNC] key 3 times in measurement mode to indicate .

The key lock can be set by pressing the []) key. At this time, the sub display flickers. Press the [] key to set key lock ON/OFF.

After setting the key lock, press the [ENT] key. The setting operation is now completed.

5.2.3 Zero calibration

Zero calibration is used to adjust zero point after the pump turns OFF.

With zero gas N₂ applied in measurement mode, press the [ZERO] key.

The [ZERO] key lamp flickers and the main display shows measured gas concentration.

After the indication is stabilized, press the [CAL] key to start zero calibration. During calibration, the [CAL] key lamp is ON.

The analyzer returns to measurement mode at the completion of calibration. The zero point is fixed to 0 Vol%.
5.2.4 Span calibration

Span calibration is made using calibration gas having a concentration which has been set as a span value.

With the pump turned OFF, apply a calibration gas and press [SPAN] key. The [SPAN] key lamp flickers and the gas concentration is shown on the main display.

When the indication becomes stable, span can be calibrated by pressing [CAL] key. The [CAL] key lamp is ON during calibration.

After calibration, the analyzer is set in measurement mode.

Be sure to perform zero calibration before making span calibration.

Note 1) Apply zero gas and span gas using the following procedure.

1 Use of canned standard gas
 Remove the cap from the calibration gas inlet, and insert the nozzle of the canned standard gas straight down into the inlet. By pressing the bottom of the can, the standard gas flows into the analyzer.
 When the indication changes, stop pressing the bottom of the can and wait until the indication is stabilized.
 Next, press and stop quickly and repeatedly, and confirm that the indication does not rise anymore and becomes constant. When calibration with [CAL] key is finished, remove the can from the calibration gas inlet.

2 Use of standard gas cylinder
 • Connect a pressure reducing valve to the standard gas cylinder, then connect the supplied calibration gas injector to the piping and insert it into the calibration gas inlet or connect the piping directly to the sample inlet.
 • When connecting the secondary pressure of the reducing valve to the calibration gas injection port after opening the standard gas main valve, set it to 1.5 to 2kgf/cm² (0.15 to 0.2MPa) or when connecting it to the sample inlet, set it to 0.2kgf/cm² (20kPa) and adjust the flow rate with the reducing valve so that it enters the white zone of the flow meter.

Note 2) When the power frequency changes (50 ↔ 60Hz), a drift of a few %FS will arise. This is normal and is not an indication of trouble. Please use it after calibration.
6. INSPECTION AND MAINTENANCE

DANGER

- When doors are open during maintenance or inspection for adjusting the optical system, etc., be sure to purge sufficiently the inside of the gas analyzer as well as the measuring gas line with nitrogen or air, in order to prevent poisoning, fire or explosion due to gas leaks.

CAUTIONS

- Before working, take off a wrist watch, finger ring or the like metallic accessories. And never touch the instrument with a wet hand. Otherwise, you will have a shock hazard.
- If the fuse is blown, eliminate the cause, and then replace it with the one of the same capacity and type as before. Otherwise, shock hazard or fault may be caused.
- Do not use a replacement part other than specified by the instrument maker. Otherwise, adequate performance will not be provided. Besides, an accident or fault may be caused.
- Replacement parts such as a maintenance part should be disposed of as incombustibles.

6.1 Routine inspection and maintenance

(1) Check on flow rate

Make sure that the float of the flow monitor is above the white zone. If it is below the white zone, check the pump piping for looseness (remove 6 cover fixing screws from the bottom and remove the cover).

(2) Inspection of filter paper (membrane filter element)

① Inspection should be made prior to initial measurement whenever measurements are required.

First check the filter paper visually for contamination.

If it has turned black or is wet with water or oil, replace it with a new one.

Failure to observe this inspection and maintenance can result in damage to the filter paper which causes entry of dust into the analyzing unit, whereby correct measurements are not available.

Filter paper should be replaced every 2 to 3 days.
② Replacement of filter paper
Make sure that the pump switch is OFF. Then, turn the membrane filter cover counterclockwise and remove the filter paper from the unit.

Next, remove the inner O-ring and take out the soiled paper. At this time, check that the unit is free from paper dust or foreign objects. Set a new filter paper in place and hold it with the inner O-ring at the texture side.

The inner O-ring should be fitted to membrane filter while pressing it with hand or with a flat object.

Finally, attach the lid of the membrane filter to the threaded section and turn it clockwise until it is locked firmly.

When it is difficult to remove the lid, apply a thin coat of vacuum grease or silicon grease to the outer O-ring.

③ Cleaning of membrane filter case
The membrane filter case should be cleaned with a piece of cloth moistened with water or cleaning solvent, then a thin coat of vacuum grease or silicon grease should be applied to the filter case.

When cleaning the inside of the filter case, special care should be taken to prevent entry of dust into its gas outlet.

6.2 Cleaning of measuring cell
Entry of dust or water drops into the measuring cell may cause a drift due to contamination inside the measuring cell. If the inside of the cell is contaminated, it needs to be cleaned.

At this time, be sure to check the sampling devices (filter, etc.) to keep the inside of the cell from contamination with dust and mist.
6.2.1 Disassembly/reassemble of measuring cell

(1) Removal of cell

1. Stop the measured gas. When it contains a harmful gas, the inside of the measuring cell should be purged sufficiently using zero gas or air.
2. Turn OFF the power switch.
3. Remove 6 cover fixing screws from the bottom and then remove the cover.
4. Remove the piping from the measuring cell.
5. Remove the sensor output cord connector from the printed circuit board.
6. Loosen the 2 sensor fixing screws holding the infrared-ray light source unit and remove the sensor from the measuring unit.
 The cell is assembled with the sensor.
7. Loosen 2 cell fixing screws holding the sensor and remove the cell. The window on one side of the cell is loosely fitted between the sensor and cell. Remove it carefully not to drop it with sensor facing upward.
8. To reassemble the measuring cell, follow the disassembling procedure in reverse order. The O-ring should be placed between the window holder and the cell. Make sure that the O-ring is positioned correctly.

(2) Drain discharge

When the drain separator is filled with drain, remove the drain plug and discharge the drain. After discharging, insert the plug firmly and tighten it with the hose band.
6.2.2 Cell cleaning procedure

① To clean the inside of the cell or the infrared-ray transmission window, roughly remove dust with a soft brush and then wipe with a soft cloth. Do not use a hard cloth.

Note) The window is easily damaged so special care should be taken when handling it. Do not rub it forcibly to avoid scratching.

② If the window is badly contaminated, use a soft cloth moistened with alcohol, acetone or other solvents.

③ If the window is corroded, use a soft cloth and chrome oxide powder. If it is badly corroded, it needs to be replaced.

④ After cleaning the cell or the window, reassemble it referring to Item 6.2.1 Disassembly/reassembly of measuring cell. The piping should be connected tightly to prevent air leaks. Also, abnormal bends of piping should be corrected.
7. ERROR CODE AND REMEDY

![DANGER]

- If the cause of any fault cannot be determined despite reference to the instruction manual, be sure to contact your dealer or Fuji Electric’s technician in charge of adjustment. If the instrument is disassembled carelessly, you may have a shock hazard or injury.

The analyzer has a self-check function. If trouble arises in the analyzer, it is indicated by error code.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Trouble</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-0, E-1</td>
<td>Trouble in digital unit</td>
<td>Press [ENT] key and the display of error code will disappear. When the error code is not displayed thereafter, make sure that the display and output are normal at the time flowing zero or span gas. If error code is displayed again at a press of [ENT] key, turn OFF and ON the power. When error code is still displayed, the printed circuit board needs to be replaced. Contact your nearest Fuji Electric’s service station.</td>
</tr>
<tr>
<td>E-2, E-3</td>
<td>Trouble in temperature sensor signal processing system</td>
<td>Clean the inside of the cell referring to Item 6.2. If calibration can not still be made after cleaning, the sensor and other units need to be checked. Contact your nearest Fuji Electric’s service station.</td>
</tr>
<tr>
<td>E-4, E-5</td>
<td>Amount of calibration exceeds the calibration limit due to drift</td>
<td>Make sure that the span concentration set value corresponds to the span gas concentration.</td>
</tr>
<tr>
<td>E-5</td>
<td>Amount of zero calibration exceeds 50% of measurement range</td>
<td>Make sure that the span concentration set value corresponds to the span gas concentration.</td>
</tr>
<tr>
<td>E-6</td>
<td>Amount of span calibration exceeds 50% of measurement range</td>
<td>Make sure that the span concentration set value corresponds to the span gas concentration.</td>
</tr>
</tbody>
</table>

1. Error code is shown on the sub display.
2. When trouble corresponds to two or more error codes, they are displayed in order, starting from the small number of code at press of [ENT] key. When [ENT] key is pressed again after all the error codes are displayed, the error display disappears but error is displayed again if trouble is still present.
3. When the cause of error is removed, the analyzer will operate properly but the error code is still displayed to indicate the occurrence of trouble. The error display goes off by pressing [ENT] key.
4. When an error code appears, first check that the power source and gas piping are normal.
5. When error display does not go off or error is displayed frequently, contact your nearest Fuji service station.
8. SPECIFICATIONS AND PERFORMANCE

• Principle of measurement: NDIR (non-dispersive infrared system)

<table>
<thead>
<tr>
<th>Measurement components</th>
<th>CO₂</th>
<th>CO</th>
<th>CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 0.2/0.5%</td>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>0 to 0.5/1.0%</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>0 to 1.0/2.0%</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>0 to 2.0/5.0%</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>0 to 5.0/10.0%</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>0 to 10.0/20.0%</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>0 to 20.0/50.0%</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>0 to 50.0/100.0%</td>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

• Repeatability: ±0.5%FS
• Drift: Zero/span, ±2.0%FS/day (indication value)
• Linearity: ±2%FS
• Response: 90% response, 15sec or less
• Sample flow rate: About 1 ℓ/min (pump, filter, built-in flow meter)
• Analog output: 4 to 20mA DC (allowable load, 550Ω or less)
• Indicator: 4 digits digital indication
• Calibration: One-touch calibration with canned gas or compressed standard gas cylinder (ø6 tube connecting attachment is supplied)
• Warm-up time: About 30min
• Power source: 100V AC±10V 50/60Hz, about 40VA (power cord is supplied)
• Sample gas condition: Dust; 0 to 10mg/Nm³ (for continuous measurement, a filter should be mounted on its front stage)

 Sample temperature; 50°C or less at analyzer inlet
 Pressure; -2.94 to +2.94kPa (-300 to +300mmH₂O)

• Installation condition:
 Temperature; 0 to 40°C
 Humidity; 90%RH or less
 Installation place; indoors (do not install near combustion exhaust gas, install on level stand, etc.)

• Case: Plastic, portable type (with ventilation hole)
• Dimensions: 170 × 260 × 375mm (H × W × D)
• Mass: 5kg or less
• Scope of delivery:
 Main unit --× 1
 Power cord ---× 1
 Power fuse (tube type; 1A, ø6.4 × 30) ---------------× 1
 Filter paper --× 25
 Calibration gas piping connecting joint -----------× 1
 Main body vinyl cover -----------------------------× 1
 ø9/5 elastic tube, 5cm (for ø6 tube connection) ----× 1
 Hose band (ø10) -----------------------------------× 2

• Option: Zero/span calibration standard gas (Type: ZBM. 1 ℓ canned gas (12 cans))
<table>
<thead>
<tr>
<th>Type :</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9 Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>F</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement components (4th digit)</td>
</tr>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>CH₄</td>
</tr>
<tr>
<td>Measurement range (5th digit)</td>
</tr>
<tr>
<td>0 to 0.2/0.5% (CO₂, CH₄ not available)</td>
</tr>
<tr>
<td>0 to 0.5/1.0% (CH₄ not available)</td>
</tr>
<tr>
<td>0 to 1.0/2.0%</td>
</tr>
<tr>
<td>0 to 2.0/5.0%</td>
</tr>
<tr>
<td>0 to 5.0/10.0%</td>
</tr>
<tr>
<td>0 to 10.0/20.0% (CH₄ not available)</td>
</tr>
<tr>
<td>0 to 20.0/50.0% (CH₄ not available)</td>
</tr>
<tr>
<td>0 to 50.0/100.0% (CO₂, CH₄ not available)</td>
</tr>
<tr>
<td>Output signal (6th digit)</td>
</tr>
<tr>
<td>DC4 to 20mA</td>
</tr>
<tr>
<td>Power source (7th digit)</td>
</tr>
<tr>
<td>AC100V 50/60Hz</td>
</tr>
<tr>
<td>Application (9th digit)</td>
</tr>
<tr>
<td>A For general-use (combustion exhaust gas, greenhouse, atmosphere)</td>
</tr>
<tr>
<td>B For C₄H₁₀, C₃H₈ degenerated thermal processing furnace gas (with about 30%H₂)</td>
</tr>
<tr>
<td>C For CH₃OH degenerated thermal processing furnace gas (with about 65% H₂)</td>
</tr>
<tr>
<td>D For ceramic industry</td>
</tr>
</tbody>
</table>

Outline diagram

Front view
- Operation panel
- Power switch
- Rubber foot
- Membrane filter
- Exhaust port (ø9/ø5 tube)
- Power socket

Side view
- Calibration gas inlet
- Measured gas inlet (ø9/ø5 tube)
- Signal connection terminal block
- Gas concentration output (4 to 20mA)

Rear view
- Operation panel
- Power switch
- Rubber foot
- Measured gas inlet (ø9/ø5 tube)
- Signal connection terminal block
- Gas concentration output (4 to 20mA)
Fuji Electric Systems Co., Ltd.

Head Office
Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome,
Shinagawa-ku, Tokyo 141-0032, Japan
http://www.fesys.co.jp/eng

Instrumentation Div.
International Sales Dept.
No.1, Fuji-machi, Hino-city, Tokyo 191-8502, Japan
Phone: 81-42-585-6201, 6202 Fax: 81-42-585-6187
http://www.fc-net.jp/eng